مطالعه ی گروه ها با تعداد متناهی نرمالساز

پایان نامه
چکیده

وقتی یک گروه g ، n – نرمالساز دارد می نویسیم g? n_n . اگر g دارای تعداد متناهی نرمالساز باشد می نویسیم g? n . توجه داریم که n=?n_i. هدف کلی بررسی گروه های متعلق به n_n و مشخص کردن گروه های متعلق به n است. همچنین بررسی می کنیم که خاصیت های زیرگروه های نرمالساز چه تاثیری روی گروه خواهد داشت. پرز-راموس گروه های متناهی دارای دو نرمالساز را بررسی کرد و کامپ-مورا این نتیجه را به گروه های موضعاً متناهی تعمیم داد. برآنیم که این نتیجه را به گروه های دلخواه گسترش دهیم. به طور کلی در فصل اول به تعاریف وقضایایی که در فصل های آتی به آن نیازمندیم به طور اجمالی می پردازیم. در فصل دوم گروه هایی با دو، سه و چهار نرمالساز را مورد بررسی قرار خواهیم داد؛ و به عنوان اولین نتیجه بدست می اوریم که اگر یک گروه دارای تعداد متناهی نرمالساز باشد، آنگاه یک fc – گروه خواهد بود و گروه هایی با چند نرمالساز متناهی را به عنوان گروه های مرکزی-بواسطه-متناهی مشخص می کنیم. همچنین ارتباط بین نرمالسازهای یک گروه و پوچتوانی یا حل پذیر بودن آن را مطالعه خواهیم کرد. در فصل سوم ملاحظه می کنیم که گروهی که در آن همه به جز چند نرمالساز متناهی از زیرگروه های آبلی دارای شاخص متناهی باشند، در این صورت گروه خارج قسمت g/ z(g) که در آن z(g) مرکز گروه است، متناهی خواهد بود.همچنین گروه هایی با چند نرمالساز متناهی از زیرگروه های ناآبلی را شرح خواهیم داد. به ویژه روی گروه هایی که در آن هر زیرگروه، نرمال یا آبلی است تاکید می کنیم و دوقسمت آخر به ترتیب به ساختار گروه هایی با چند نرمالساز متناهی از زیرگروه های زیرنرمال و زیرگروه های نازیرنرمال اختصاص دارد. در فصل چهارم n^n - گروه ها که نرمالسازهای زیرگروه های دوری می باشند را مورد بررسی قرار می دهیم. در حقیقت ثابت خواهیم کرد که هر گروه متناهی حداکثر با ‎20‎ نرمالساز از زیرگروه های دوری حل پذیر است.

منابع مشابه

بررسی گروه هایی با تعداد متناهی نرمالساز

وجودزیرگروه های نرمالسازتأثیرزیادی بر روی ساختار ساختارگروه ها دارد.تاآنجاکه درسال1988گروه هایی با دو نرمالساز توسط روماس بررسی شد ، در ادامه این کار در سال 2000 مورا گروه هایی موضعاً متناهی با دو نرمالساز را مورد مطالعه قرار داد. سپس توتا ساختار گروه های دلخواه که دارای زیر گروه هایی با دو ، سه و چهار نرمالساز باشند را مشخص کرد و تأثیر این نرمالسازها را مورد بررسی قرار داد. در این پایان نامه ما...

15 صفحه اول

تعداد مرکزسازهای یک گروه متناهی

: در این پایان نامه تعداد مرکزسازهای یک گروه متناهی را بررسی می کنیم. فرض کنیم g یک گروه باشد، مجموعه ی مرکزسازهای g را با cent(g) نشان می دهیم. بررسی ارتباط ساختار گروه و |cent(g)| موضوع جالبی است. یک گروه g، n-مرکزساز نامیده می شود اگر |cent(g)|=n. هم چنین یک گروه را n-مرکزساز اولیه می گوییم اگر |cent(g) |=|cent(g/z(g) ) |=n، که در آن z(g) مرکز g است. در این پایان نامه گروه های 4-مرکزساز تا 8...

15 صفحه اول

رویکردهایی به مساله تعداد توپولوژی ها روی یک مجموعه متناهی از منظر مشبکه

متن حاضر بخشی از یک تحقیق موضوعی پیرامون مساله شمارش توپولوژی ها روی یک مجموعه متناهی است که شامل: ویژگی های مشبکه توپولوژی ها، خواص توپولوژی های AT (اصلی)، معادل بودن این مساله با شمارش پیش ترتیب ها روی n نقطه، نحوه ارتباط مفاهیم توپولوژیکی روی یک مجموعه متناهی و نتایج به دست آمده برای n نابیشتر از 16 می باشد. متن از لحاظ مفاهیم توپولوژیکی خودکفا است.

متن کامل

گروههایی با تعداد متناهی نرمالساز از زیرکروههای بدون خاصیت نرمال متعدی

هدف این پایان نامه مطالعه گروههایی با تعداد متناهی نرمالساز از زیرگروههایی می باشد که خاصیت tندارند. در فصل اول به بیان تعاریف و قضایای مقدماتی پرداخته ایم که در فصول دوم و سوم به آنها پرداخته ایم که در فصول دوم و سوم به آنها احتیاج داریم.این فصل مشتمل بر 8 بخش شامل جابجاگرها، گروههای عملگر، شرایط ماکسیمال و مینیمال،گروههای حلپذیر و پوچتوان، سریهای مرکزی بالایی و پایینی ، بستار نرمال متوالی،کلا...

15 صفحه اول

تعداد زیر گروه های فازی از یک گروه آبلی متناهی

در فصل اول پایان نامه به قضایایی در مورد گروه های متناهی می پردازیم. در فصل دوم به معرفی زیرگروههای فازی و قضایای مربوطه می پردازیم. در فصل سوم به معرفی زیرگروه های فازی هم ارز می پردازیم. وبالاخره در فصل آخر به تعیین تعداد زیرگروه های فازی از گروه های دوری و p-گروه آبلی خاص می پردازیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023